Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

What's the big deal about Hadoop?

Todd R. Weiss | Feb. 15, 2012
Hadoop is all the rage, it seems. With more than 150 enterprises of various sizes using it -- including major companies such as JP Morgan Chase, Google and Yahoo -- it may seem inevitable that the open-source Big Data management system will land in your shop, too.

"Hadoop has really changed the landscape for us," he says.

"You can run lots of different jobs of different types on the same hardware. The world pre-Hadoop was fairly inflexible that way," Williams explains. "You can make full use of a cluster in a way that's different from the way the last user used it. It allows you to create innovation with very little barrier to entry. That's pretty powerful."

Scaling up, and up

One early Hadoop adopter, Duluth, Ga.-based Concurrent, sells video-streaming systems. It also stores and analyzes huge quantities of video data for its customers. To better cope with the ever-rising amount of data it processes, Concurrent started using Hadoop CDH from Cloudera two years ago.

"Hadoop is the iron hammer we use for taking down big data problems," says William Lazzaro, Concurrent's director of engineering. "It allows us to take in and process large amounts of data in a short amount of time."

One Concurrent division collects and stores consumer statistics about video. That's where Hadoop comes to the rescue, Lazzaro says. "We have one customer now that is generating and storing three billion [data] records a month. We expect at full rollout in the next three months that it will be 10 billion records a month."

Two key limitations for Concurrent in the past were that traditional relational databases can't handle unstructured data such as video and that the amount of data to be processed and stored was growing exponentially larger. "My customers want to keep their data for four to five years," Lazzaro explains. "And when they're generating one petabyte a day, that can be a big data problem."

With Hadoop, Concurrent engineers found that they could handle the growing needs of their clients, he says. "During testing they tried processing two billion records a day for the customer, and by adding another server to the node we found we could complete what they needed and that it scaled immediately," Lazzaro says.

The company ran the same tests using traditional databases for comparison and found that one of the key benefits of Hadoop was that additional hardware could easily and quickly be added on as needed without requiring extra licensing fees because it is open source, he says. "That became a differentiator," Lazzaro says.

Another Hadoop user, life sciences and genomics company NextBio, of Santa Clara, Calif., works on projects involving huge data sets for human gene sequencing and related scientific research.

"We bring in all kinds of genomics data, then curate it, enrich it and compare it with other data sets" using Hadoop, says Satnam Alag, vice president of engineering for NextBio. "It allows mass analytics on huge amounts of public data" for their customers, which range from pharmaceutical companies to academic researchers. NextBio uses a Hadoop distribution from MapR.

 

Previous Page  1  2  3  4  5  6  Next Page 

Sign up for Computerworld eNewsletters.