Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Technologies to watch 2013: Gigabit Wi-Fi

John Cox | Jan. 3, 2013
The next major advance in Wi-Fi, the still-in-draft IEEE 802.11ac standard, seems like a slam-dunk: It promises data rates ranging from 433Mbps to, in some configurations, 1.3Gbps, hence the label "Gigabit Wi-Fi." What's not to like?

The next major advance in Wi-Fi, the still-in-draft IEEE 802.11ac standard, seems like a slam-dunk: It promises data rates ranging from 433Mbps to, in some configurations, 1.3Gbps, hence the label "Gigabit Wi-Fi." What's not to like?

But as is usual in wireless networking, the actual implementation of 11ac in products, their deployment and use make for a more complicated picture.

11ac will be faster, but how much faster really?

There are already consumer-focused access points, routers and adapters based on the existing 11ac draft, which is not expected to change much by the final IEEE ratification in late 2013 or early 2014. And some analysts are forecasting very rapid 802.11ac adoption by client devices. ABI Research recently forecast that in 2015, 70% of smartphones shipping will have 802.11ac radios.

To achieve its high data rates, 802.11ac uses several techniques. One is bigger channels, up to 80MHz wide compared to the maximum 40MHz for 802.11n. A new modulation scheme essentially packs more information in the radio signal. Beamforming is a mandated feature instead of an option as in 802.11n: it optimizes the signal between the access point and each connected client.

But the actual performance will depend on a range of variables: how many data streams the radio supports (a maximum of eight for 11ac), range from the access point or hot spot, the number of other clients associated, the kind of applications being used, and so on.

Apart from the magnitude of the data rate improvements - three or four times that of today's widely deployed 802.11n networks - 802.11ac provides a host of other benefits. Users can expect higher-quality radio links, and see higher data rates (compared to 802.11n) maintained consistently as the distance from the access point increases. There will be much less traffic and interference in the 5GHz band, which is the only frequency band 802.11ac uses, compared to the 2.4-GHz band used by a majority of Wi-Fi clients today. And beamforming and the improved signal quality will compensate somewhat for the lower range of 5GHz vs. 2.4GHz.

Finally, 802.11ac is much more power efficient than 802.11n, reducing battery demand for mobile devices. And the much faster data rates mean that users can send and receive a given amount of data much faster, reducing time "on the air" and, again, using less power.

You can expect a range of 802.11ac product demonstrations and announcements (for the consumer market) at the upcoming Consumer Electronics Show in Las Vegas, Jan. 8-13.

In early 2013, the Wi-Fi Alliance will launch its 802.11ac testing, designed to certify 802.11ac interoperability of different 802.11ac products and brands. The "Wi-Fi Certified" brand will help to make 802.11ac a mainstream technology in short order.

 

1  2  Next Page 

Sign up for Computerworld eNewsletters.