Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Driverless car is wireless star at MIT

Colin Neagle | Oct. 15, 2012
At a launch event for the school's new wireless technology research center, MIT PhD student Swarun Kumar presented technology for a new autonomous vehicle that recognizes when it may be in danger of striking other cars and pedestrians.

This is accomplished by organizing the information into subsets that separate the data that signifies empty roads from the data that warns of obstacles. Kumar explained it as a set of cubes that represent physical areas near the car. Those cubes are broken down into smaller cubes, or subsets, of data, which give an increasingly more targeted and accurate snapshot of the physical area.

Those cubes are assigned a numerical value of '0' if the physical space it represents is empty and a value of '1' if it is occupied by an object, like a pedestrian or another vehicle. If the cube is assigned a 0, then the entire area is empty, and therefore all the cube's subsets will be empty as well. If it is assigned a 1, then CarSpeak breaks it down to its smaller cubes and pinpoints those that are occupied by an object. The remaining empty cubes are then ignored.

This process reduces the amount of data the vehicle needs to process to just that which suggests a road hazard, and assigns that data a higher priority. CarSpeak can then process the data for occupied areas and respond accordingly without being bogged down by information that doesn't matter.

Of course, CarSpeak is not a final product, and some attendees at the event brought up remaining issues. Among those concerns were what happens when the sensors on the car become dirty - from dust or snow - or how an autonomous vehicle will respond if a pedestrian stops before fully crossing the road. Some of the human aspects of driving have yet to be addressed.

Resolving safety issues will be the objective of researchers worldwide. Kumar says that through reduced traffic congestion, higher fuel efficiency and improved productivity, autonomous cars could save $100 billion per year. The potential upside has already convinced two states - Nevada and California - to legalize autonomous vehicles, and General Motors to predict that the cars will appear on the road by 2020.

MIT has been on the forefront of autonomous vehicles research for years, and even participated in the DARPA Urban Challenge in 2007, where it competed with other universities that teamed with companies like GM, Volkswagen, and Raytheon. The opening of its new wireless center, Wireless@MIT, will only speed up the advances, as several other projects undertaken help leverage mobile technology to improve transportation safety.



Previous Page  1  2 

Sign up for Computerworld eNewsletters.