Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Graphene is the super substance that could replace silicon, plastic and glass

Marco Chiappetta | April 30, 2014
A single atom thick, yet strong as steel and hard as a diamond, graphene could change how we build technology. If we can figure out how to manufacture it.

One area where graphene is likely to have the most immediate impact is the manufacture of flexible and transparent electronics, such as touchscreens. Graphene could replace indium, which is one of the rarest elements on Earth. (Carbon--the foundation of graphene--is one of the most abundant elements on the planet.) Graphene is also lighter, thinner, and stronger than indium. Ultra-strong windshields that double as display clusters are not out of the realm of possibility. Neither is Tony Stark's transparent smartphone.

Graphene's electrical properties also render it an ideal material for building integrated circuits. During a Q&A session at the 2013 Intel Developers Forum, Intel CEO Brian Krzanich said the company is evaluating graphene's potential use in chip manufacturing, replacing silicon. Routine use, he said, would be a "few generations" out, putting it roughly in the 2020 timeframe.

Graphene might also serve as the foundation for next-generation solid-state capacitors that charge more quickly than today's offerings and hold a charge for much longer. And graphene could usher in an age of ultra-powerful, lightweight batteries with far more capacity than anything available today. By super-cooling graphene and surrounding it in strong magnetic fields, researchers have also been able to alter the direction of the flow of electrons along graphene's surface, based on the spin of the electrons, which opens up possibilities for quantum computing.

Graphene won't be relegated solely to electronics and display technology. Its excellent strength-to-weight ratio could also pave the way for strong, lightweight vehicles, while its transparency and electrical conductivity make it a good candidate for future solar panels. Punching nano-sized holes in a sheet of otherwise impermeable graphene could be used in machines that pull a single strand of DNA through the hole, for rapid DNA sequencing, or water purification or desalination.

Manufacturing graphene

Before those fantastical devices can become reality, however, industry must first develop a reliable, cost-effective manufacturing process. That's where the majority of current graphene research effort is concentrated.

Graphene is being manufactured today using a number of methods: The "Scotch tape" method (also known as mechanical exfoliation or the cleavage method), is the simplest. This is how Andre Geim and Konstantin Novoselov isolated graphene from a larger hunk of graphite in 2004--research that led to their being awarded the Nobel Prize in Physics in 2010.

The adhesive tape is used to extract small pieces of graphite from a larger chunk. A layer of graphene is peeled away from the graphite by continually folding the tape over the pieces and then separating the tape. The strength of the adhesive overcomes the weak van der Walls forces holding the layers of graphite together until there is a single layer, yielding graphene.


Previous Page  1  2  3  Next Page 

Sign up for Computerworld eNewsletters.